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Introduction:Apart from thechallengeof very high precision142Ndl144Nd ratiomeasurement, accurate

applicationsof thecoupled 146,147Sm-142.143Ndsystematics[I]inplanetarydifferentiationstudiesrequirevery
preciseknowledge of thepresent-day(post-146Smdecay) 142Nd/144Nd ratiosofbulk planetaryobjects(BP). The

coupledsystemaficsyieldmodel agesforthetimeofformationofSm/Nd-fractionatedreservoirsby differentiationof

Sm/Nd-unfractionatedbulk planetaryreservoirs[1,2,3,4].Estimatesof (142Nd1144Nd)Bp and (143Nd1144Nd)Bp
thereforeprovidethe criticalbaselinerelativetowhich thesemodel ages are referenced.In the 147Sm-143Nd

systematics,143Nd/144Nd variationsaremostlylarge(>200 ppm), and thereforesmall(viz.,<20 ppm) variationsin

initial143Nd/144Nd ratiosgenerallycan be ignored. However, in the case of 146Sm-142Nd, the range of

142Nd/144Nd divergencefor differentiatedplanetaryreservoirsismuch smaller(<-I00 ppm). Consequently

146,147Sm-142,143Nd model ages aresensitivetosmallvariationsinbulk planetary142Nd/144Nd (bothpresent-
day and initial).One major unanswered questioniswhetheror notNd shelfstandards(CIT Ndl3/Ames metal,La

Jolla,NASA-JSC/Ames metal)have 142Nd/144Nd identicaltothebulkEarthorotherwisemight recordsome degree
ofradiogenicevolutioninan early-fractionatedreservoir.Our discussionsof earlyEarthdifferentiationbased on

142Nd1144Nd in Isua and Acasta samples [I,5]have employed a working assumption: (142Nd/144Nd)Nd_ =
(142Nd/144Nd)Bulk Earth.This requiresexperimentaljustificationand isapparentlycontradictedby chondrite

142Nd/144Nd measurements [3,4],which have been interpretedto indicate:(142Nd/144Nd)JsC/Ame s metal =

!(142Nd/144Nd)cHUR + 35+8 ppm) [4].At present,interpretationsof theearlyEarthand Moon hingelargelyon this

_ssue. Because Ba inbulk chondritesamples exhibitssimilarmagnitude nuclearanomalies [6],attributableto

incompletemixing ofinterstellarcomponents,a criticalquestioniswhetherornot nucleareffectsarealsopresentin
142Ndl144Nd, both inbulkchondritesand between planetaryobjects.Ingeneral,142Nd/144Nd variationsbetween

bulk planetaryreservoirscould resultfrom four possibilities:(i)ab initio("nuclear")variationof initial

142Nd1144Nd; (ii)ab initiovariationof (146Sm/144Sm)Bp; (iii)variationin (Sm/Nd)np; and (iv)radiogenic

evolution of 142Nd/144Nd in an Sm/Nd-fractionated "parental" reservoir prior to formation of the Moon putatively
by giant impact. The fast two possibilities result from incomplete mixing of interstellar components and the third
from cosmochemical fractionation of the rare earths. Possibility (ii) is an unlikely problem because isotopic
variability on the planetary scale due to incomplete mixing is a small effect---apparently <100 ppm in the Ba-REE
region. At this level, initial 146Sm/144Sm heterogeneity will not be significant, either as a chronometric bias

(from error in the 146Sm/144Sm ratio) or via the post-decay shift in bulk planetary 142Nd/144Nd. (A 100 ppm
shift in initial 146Sm/144Sm amounts to only a 28 ppb shift in 142Nd/144Nd). A larger nebular heterogeneity
scale in 146Sm/144Sm would be expected if 146Sm was synthesized "locally" by protosolar flare spailation, but the
low abundances of 53Mn and 92Nb in the early solar system preclude more than -2% local spallogenic production of
the ab initio 146Sm budget [7]. By an indirect argument, planetary-scale Sm/Nd variability (possibility iii) also
appears not to be a significant problem. The degree of moderately volatile/refractory element fraction between the
Earth, Moon, Mars, EPB, bulk solar system and EPB, can be gauged from inferred bulk Mn/Cr ratios [of., 81. The
bulk Earth and Moon exhibit the strongest inferred Mn/Cr fractionations---about equal to bulk Allende. High
precision measurements of 147Sm/144Nd in large homogenized samples of Allende [9,10J differ from the "CHUR"

average (147Sm/144Nd = 0.1967 [9]) only by a very small fractionation factor (147Sm/144Nd = 0.1964; fs,vNa = -
0.0015). Assuming Sm/Nd variation between bulk planetary reservoirs to be limited to the rangefs,vNd = +0.0020,
bias relative to CHUR will be less than a total range of 46 ppm and 1.1 ppm in £143Nd and tZ42Nd, respectively---
which is not significant. Discussions of (iv) are critically dependent on a satisfactory evaluation of (i) and

determination of an appropriate 142Nd/144Nd bulk Earth value from Sm/Nd-unfractionated meteorites, adjusted for
nuclear effects. Here we show that the problem of planetary-scale nuclear effects can be satisfactorily addressed by
coupling high precision 142Nd/144Nd measurements with 145Nd/144Nd measurements using the decomposition of
Nd into s- and r-process components obtained from SiC studies [11].

Nuclear Effects in Ba and Nd due to Incomplete Nebular Mixing: R-excess type anomalies in Ba, Nd and Sm

isotopes are well-known from studies of the highly anomalous "FUN" inclusion EK1-4-1 [12]. More recently,
similar effects at <50 ppm levels have been resolved in Ba in large bulk samples of Orgueil and Allende, and a strong
hint of an anomaly at the -8+6 (2a) ppm level was observed in 4 high quality runs of the LEW 86010 angrite [6;
Fig. 1]. The presence of isotopic anomalies in Ba in bulk chondrites and an achondrite indicates that similar effects
are probably also present in Nd. 'Measurements of 142Nd/144Nd in Sm/Nd-unfractionated meteorites, therefore.
probably do not provide an accurate measure of the CHUR/bulk Earth value without correction for nuclear differences

relative to the bulk Earth. The data required for these corrections are: (a) a measure of nuclear effects in Nd and (b) the
relative proportions of the r- and s-process contributions across the Nd masses. Modelling of r/s-type nuclear
anomalies begins with a determination of the r-process excess parameters: _r.i = Ei(NE r+s/Nr)i, where ei is the
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abundance anomaly in the nuclide i (due to an excess in its r-process component) and N refers to atom number

proportions [13]. It can be seen that abundance anomalies are demagnified in proportion to the fraction of s-process
component in any nuclide for a given r-process excess. For self consistency, llr, i should agree for all masses of the
same element. (Excesses may agree between nuclides of different elements, but this is not necessarily the case.) In

practice, anomalies are determined in normalized ratios which involve a cumulate of the effects at 3 or 4 masses.
However for Ba, an s-only mass-136 index and 134Ba]136Ba normalization can be utilized, and the magnitudes of the
r-excesses are then obtained simply from the 135Ba/136Ba and 137Ba/136Ba ratio anomalies multiplied by (N z r÷s

/Nr)i for masses 135 and 137. From the Mainz Murchison SiC s-process decomposition [11], we obtain multipliers
of 1.2 and 2.0 for masses 135 and 137, respectively. The product of these and the measured anomalies yield self
consistent r-excesses of 48-t--10 ppm and 44-1--14 ppm for the Allende 135Ba/136Ba and 137Ba/136Ba anomalies,

and 28+-8 ppm and 3.2Y.~11 ppm for Orgueil (Fig. 1). An r-excess of 10-2-_8ppm is inferred from the LEW 80610
135Ba/136Ba data. Figures 2a and 2b show the expected anomaly patterns in iNd/144Nd for r-excesses of 10, 20 and

30 ppm, normalized to 146Nd/144Nd and 148Nd/144Nd, respectively, using the Mainz Nd decomposition: {(Nx r.,
/Nr)i: (142, 143, 144, 145, 146, 148, 150) = (1.00/0.00, 1.44_+0.01, 2.15_+0.09, 1.33_+0.01, 2.21_+0.03, 1.07_+0.01,
1.00) } [11]. It can be seen that the signs of the 142Nd/144Nd anomalies are negative for both normalizations and
that their magnitudes are reduced by factors of 2.2 and 4.5, respectively, w.r.t, the r-excess. The -35+8 ppm
deviation in 142Nd/144Nd relative to the NASA standard (identical to Nd_) reported by [4] for bulk chondrites

corresponds to excesses of 77 ppm relative to 146Nd/144Nd and 1.6 e-units relative to 148Nd/144Nd.
Monitoring Nuclear Effects with Very High Precision 145Nd/144Nd Measurements: Figure 2 also shows that r-

excesses in the 10-30 ppm range produce small anomalies of 3-9 ppm in 145Nd/144Nd. If these small effects can be
resolved, appropriate corrections can be applied to 142Nd/144Nd. Larger effects will be present in 148Nd/144Nd and
150Nd/144Nd for the 146Nd/144Nd normalization, but these ratios are difficult to measure to high precision. Figure
3 shows reproducibility for 17 dynamic mode 145Nd/144Nd measurements of Nd_3 (7) and terrestrial samples (10),
exponentially normalized to 146Nd/144Nd = 0.724134. 2ap of these data is +3.9 ppm (2t_m = +0.95 ppm, about a
mean value of 145Nd/144Nd = 0.34894096), demonstrating a capability for resolving shifts in 145Nd/144Nd down to

2 ppm, 2a, with quadruplicate measurements. This corresponds to a +3 ppm control on r vs. s polarization-type
anomalies in 146Nd/144Nd-normalized 142Nd,/144Nd ratios due to incomplete nebular mixing. Applications of this
method to chondrites, eucrites, lunar rocks and SNC meteorites will provide strong constraints on the bulk planetary
142Nd/144Nd values and contribute significantly towards understanding early planetary differentiation processes.
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